Optimal dimension reduction for high-dimensional and functional time series

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Series expansion for functional sufficient dimension reduction

Functional data are infinite-dimensional statistical objects which pose significant challenges to both theorists and practitioners. Both parametric and nonparametric regressions have received attention in the functional data analysis literature. However, the former imposes stringent constraints while the latter suffers from logarithmic convergence rates. In this article, we consider two popular...

متن کامل

Deciding the Dimension of Effective Dimension Reduction Space for Functional and High-dimensional Data

In this paper, we consider regression models with a Hilbert-space-valued predictor and a scalar response, where the response depends on the predictor only through a finite number of projections. The linear subspace spanned by these projections is called the effective dimension reduction (EDR) space. To determine the dimensionality of the EDR space, we focus on the leading principal component sc...

متن کامل

Dimension reduction for high-dimensional data.

With advancing of modern technologies, high-dimensional data have prevailed in computational biology. The number of variables p is very large, and in many applications, p is larger than the number of observational units n. Such high dimensionality and the unconventional small-n-large-p setting have posed new challenges to statistical analysis methods. Dimension reduction, which aims to reduce t...

متن کامل

Dimension Reduction for Clustering Time Series Using Global Characteristics

Existing methods for time series clustering rely on the actual data values can become impractical since the methods do not easily handle dataset with high dimensionality, missing value, or different lengths. In this paper, a dimension reduction method is proposed that replaces the raw data with some global measures of time series characteristics. These measures are then clustered using a self-o...

متن کامل

A Dimension-Reduction Framework for Human Behavioral Time Series Data

Human-machine interaction has become one of the most active research areas, and influenced several new paradigms of computing such as Social computing,Mobile computing, and Pervasive/Ubiquitous computing, which are typically concerned with the study of human user’s behavior to facilitate behavioral modeling and prediction. Human behavioral data are usually high-dimensional time series, which ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistical Inference for Stochastic Processes

سال: 2018

ISSN: 1387-0874,1572-9311

DOI: 10.1007/s11203-018-9172-1